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In this lecture, we derive the (1PI) effective action from the path integral by

way of a suitably defined generating functional. We show how one can account

for quantum corrections as a systematic expansion in powers of }. We then show

how one would formally calculate all contributions (to one loop) in a diagrammatic

expansion, moving on to show how one can explicitly evaluate the effective action

using the heat kernel formalism. We conclude with a simple application– deriving

the Coleman-Weinberg effective potential in flat space.

I. THE EFFECTIVE ACTION FROM THE PATH INTEGRAL.

We begin with the generating functional Z[j] for a scalar field φ with the action S[φ] coupled
to an external source j:

Z[j] =

∫
Dφ e

i
~ [S[φ]]+

∫
d4x jφ], (1)

with which we can construct all n-point correlation functions as

〈φ1...φn〉 =
1

Z

∫
Dφ φ1...φn e

i
~S[φ]. (2)

Defining W[j] as

e
i
~ W [j] := Z[j], (3)

we assert that W [j] is the generating functional of all connected Green’s functions. Although
a formal proof of this statement is available in many standard QFT textbooks (e.g. [1]), we
content ourselves here with an explicit demonstration up to the three point correlator:

W [j] = −i~ lnZ[j]

δW

δj(x1)
= −i~ 1

Z

δZ[j]

δj(x1)

=
−i~
Z

∫
Dφ iφ(x1)

~
e

i
~ [S[φ]]+

∫
d4x jφ]

=
1

Z

∫
Dφ φ(x1)e

i
~ [S[φ]]+

∫
d4x jφ]

(4)

Hence
δW

j(x1)

∣∣∣∣
j≡0

= 〈φ(x1)〉
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The above quantity– the so called quantum averaged field– will play a very important role
in what follows. Taking another functional derivative with respect to to the external source,
we find:

δ2W

δj(x1)δj(x2)

∣∣∣∣
j≡0

=
i

~
[〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉], (5)

and similarly again

δ3W

δj(x1)δj(x2)δj(x3)

∣∣∣∣
j≡0

=
( i
~

)2

[〈φ(x1)φ(x2)φ(x3)〉 − 〈φ(x1)φ(x2)〉〈φ(x3)〉

+ perm+ 2〈φ(x1)〉〈φ(x2)〉〈φ(x3)〉].
(6)

Therefore anecdotally justifying W [j] as the generator of connected correlation functions.

Exercise: Take one more functional derivative to obtain the connected four
point correlation function, assuming now that 〈φ(x)〉 ≡ 0. What would the result
evaluate to for a purely Gaussian field?

Specifically defining the C-number field Φ(x)

Φ(x) =
δW

δj(x)

≡ 〈φ(x)〉,
(7)

we now invert this to yield j(x) as x-dependent functional of Φ(x)

j(x) = j[Φ](x). (8)

Define now the so-called effective action as1

Γ[Φ] ≡ W [j]−
∫
d4yj(y)Φ(y) (9)

where the above consists merely in having made a Legendre transformation to render Φ(x)
the independent (functional) variable. Taking the functional derivative of Γ[Φ] w.r.t. Φ, we
see that

δΓ[Φ]

δΦ(x)
=

∫
d4y

δW

δj(y)

δj(y)

δΦ(x)
−
∫
d4y

δj(y)

δΦ(x)
Φ(y)− j(x)

= −j(x)

(10)

where we have used (7). Therefore the effective action Γ[Φ] is the quantity that generates
the quantum corrected equations of motion by being extremized with respect to variations of
the (vacuum) expectation values of the fields. W[j] can be formally recovered from

W [j] = Γ[Φ] +

∫
d4xj(x)Φ(x) (11)

1 We justify this definition simply by demonstrating its salient properties in what follows. The treatment

in this section closely follows that of [2].
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We note that in general, the generating functional is only defined up to an arbitrary nor-
malization factor (that drops out of all observable quantities, i.e. transition amplitudes)

Z[j] = N
∫
Dφ e

i
~ [S[Φ]+

∫
d4xjφ] (12)

It is convenient to define the normalization as

N =
[∫ Dφ e

i
~S0[φ]]−1 (13)

where S0[φ] is the free (or more generally, solvable) part of the interaction. Therefore

e
i
~W [j] = N Z[j] (14)

can be re-expressed through (11) as

e
i
~

[
Γ[Φ]+

∫
d4x j(x)Φ(x)

]
= N

∫
Dφ e

i
~ [S[Φ]+

∫
d4xjφ] (15)

From the right hand side of the above, we clearly see that } is a measure of the size of quan-
tum fluctuations. From the argument of the exponential, we see that as one integrates over
the functional measure, all fluctuations except those for which the stationary approximation
is valid are suppressed. In most physical systems, this occurs only in the neighbourhood of
a few critical points, whose size is set by }. Therefore expanding in powers of ~ is equivalent
to accounting for successively larger quantum fluctuations. Beginning with the zeroth order
approximation, at lim~→0 path integral is dominated by the classical path

δS

δφ

∣∣∣
φ=φcl

= −j(x) (16)

Therefore one can equate exponents in (15) (and dropping a trivial constant term that
results from making the saddle point approximation)

W [j] = Γ[Φ] +

∫
d4xj(x)Φ(x) = S[φcl] +

∫
d4x j(x)φcl (17)

Taking the functional derivative of the above with respect to j(x)

δW [j]

δj(x)
= Φ(x) =

∫
d4y

δS

δφcl

δφcl
δj(x)

+ φcl +

∫
d4y j(y)

δφcl
δj(x)

(18)

and using (16), we find the zeroth order solution,

Φ(x) = φcl (19)

so that to zeroth order in ~, the effective action is the same as the classical action but now
evaluated on the quantum averaged field Φ

Γ[Φ] = S[Φ]. (20)
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Without loss of generality, we consider the functional generalization of the Taylor expansion
for the effective action, writing

Γ[Φ] =

∫
...

∫ ∞∑
n=0

Γn
n!

(x1, ..., xn)Φ(x1)...Φ(xn) (21)

where

Γn(x1, ..., xn) :=
δnΓ

δΦ(x1)... δΦ(xn)

∣∣∣∣
Φ≡φcl

(22)

so that we expand the effective action around the correct vacuum. For example, consider a
O(N) φ4 theory, with component fields φa:

S[φcl] = Γ[Φ] =

∫
d4x

[
− 1

2
∂µΦa∂

µΦa − m2

2
ΦaΦ

a − g

4!
(ΦaΦ

a)2
]

(23)

where we have assumed a flat target space metric, so there is no particular significance to
whether the target space index a is raised or lowered. We note that if m2 > 0, there exists
an extremum at Φ ≡ 0. Therefore:

Γ(2)(x1, x2)ab =
δ2Γ

δΦa(x1)δΦb(x2)

= (�−m2)δabδ
4(x1, x2),

(24)

which determines the inverse propagator

Γ(2)(x1, x2)ab →
[
i~G−1

]
ab

(x1, x2). (25)

Furthermore

Γ4
abcd(x1, x2, x3, x4) =

δ4Γ

δΦa(x)...δΦd(x4)

=
g

3
[δabδcd + δacδbd + δadδbc].

(26)

All other vertex functions vanish. Using the classical action with quantum average Φ replac-
ing φcl is known as the mean field approximation. We now consider } corrections. We first
parametrize fluctuations around the extremum solution in function space as

φ(x) = φcl(x) + δφ(x) (27)

so that expanding the argument of the generating functional (15) up to quadratic order in
δφ as

S[φ] +

∫
d4x j(x)φ(x) = S[φcl] +

∫
d4x
��

�
��

�
��*

δS

δφcl(x)
δφ(x)

+

∫
d4xd4y

1

2

δ2S

δφcl(x)φcl(y)
δφ(x)δφ(y) + ...

+

∫
d4x j(x)φcl(x) +

∫
d4x���

���:j(x)δφ(x)

(28)
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Where the cancellation follows from (16). Therefore, the generating functional becomes

Z[j] ≈ N e
i
~ [S[φcl]+

∫
d4x j(x)φcl(x)]

×
∫
Dδφ exp

[
i

2~

∫
d4xd4y δφ(x)

δ2S

δφcl(x)δφcl(y)
δφ(y)

]
(29)

We see that because of the denominator in the Fresnel integral above, the paths that domi-
nate the functional integration will have characteristic fluctuations of the order δφ ≈ O(h1/2).
Therefore in stopping at quadratic order in δφ, we are neglecting terms of O(h3/2). In this
approximation, we have

Z[j] ≈ N e
i
~ [S[φcl]+

∫
d4x j(x)φcl(x)] det

[ δ2S

δφcl(x)δφcl(y)

]−1/2

. (30)

A few explanatory words are in order here– the evaluation of the (Gaussian) path integral
into a functional determinant can be thought of as the infinite dimensional generalization
of the following finite dimensional integral of a quadratic form (x,Ax), with ( , ) an N
dimensional scalar product and A some symmetric (more generally, self-adjoint) operator
with eigenvalues {ai}Ni=1:∫

dNx e−λ(x,Ax) =
N∏
i=1

√
π

λai
≡ ÑdetA−1/2, (31)

where Ñ is another normalization that will not matter in the end. We furthermore note the
identity

(detA)−1/2 =
N∏
i=1

a
−1/2
i = elog

∏N
i=1 a

−1/2
i = e−

1
2

∑
i log ai = e−

1
2

Tr logA (32)

Therefore

N =
[
Dφ e

i
~S0[φ]

]−1

:=
(
det Ω0

)1/2
; e.g.Ω0 = (�−m2) (33)

where more generally Ω0 is the kernel of the free part of the action.

Z[j] = (det Ω0)1/2 exp

[
i

~

{
S[φcl] +

∫
d4xj(x)φcl +

i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣
φcl

+ ...

}]
(34)

Recalling that

W [j] = Γ[Φ] +

∫
d4x j(x)Φ(x) (35)

And making the expansions

W [j] = W0[j] + ~W1[j] + ...

Φ = φcl + ~φ1 + ...
(36)

we expand (15) using (34) and (35) (and ignoring constant normalizations) to find:

Γ[Φ] +

∫
d4x���

���:j(x)Φ(x) = S[φcl] +

∫
d4x j(x)φcl +

i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣∣∣
φcl

= S[Φ− ~φ1] +

∫
d4x j(x)[���Φ− ~φ1]

+
i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣∣∣
Φ−~φ1

(37)
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Further expanding S[Φ− }φ1] in the above, we find

Γ[Φ] = S[φcl]− ~
��

�
��
�*

[
δScl
δΦ

+ j]φ1 +
i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣∣∣
Φ−}φ

= S[φcl] +
i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣∣∣
Φ=φcl

+O(}3/2),

(38)

Where the cancellation above follows from (16) and the fact we only work to O(}) so that
we can take Φ = φcl within the term in the square brackets. Therefore, equating powers of
} above, order by order the effective action is given by

Γ0[Φ] = Scl[φ]

Γ1[Φ] =
i~
2

Tr log
δ2S

δφ(x)δφ(y)

∣∣∣∣
Φ=φcl

(39)

Written out in detail,

Γ[Φ] =

∫
d4x

[
− 1

2
∂µΦa∂

µΦa − m2

2
Φ2
a −

g

4!
(Φ2

a)
2

]
+
i~
2

∫
d4xd4y log

[
(�−m2)δab −

g

6
(δabΦ

2
c + 2ΦaΦb)

]
(x, y)δ4(x, y).

(40)

For a 1-d target space:

Γ[Φ] =

∫
d4x

[
− 1

2
(∂Φ)2 − m2

2
Φ2 − g

4!
(Φ)4

]
+
i~
2

Tr log
[
�−m2 − g

2
Φ2
] (41)

Where we recall that Φ ≡ 0 is an extremum for m2 > 0. We rewrite the first quantum
correction as

i~
2

Tr log[�−m2 − g

2
Φ2] =

i~
2

Tr log[�−m2][1− g

2[�−m2]
Φ2] (42)

where by exploiting the properties of the logarithm, we can write this as

=
i~
2

Tr log[�−m2] +
i~
2

Tr log[1 +
i

�−m2

ig

2
Φ2] (43)

where the first term contains the usual Coleman-Weinberg correction to the effective poten-
tial, and where the second term generates derivative corrections to these. This can be seen
by formally expanding the second term as

−i~
2

∞∑
n=1

(
−ig

2

)n
1

n

∫
d4xd4y

[(
i

�−m2

)
Φ2

]n
(x, y)δ4(x, y) (44)

we find the more familiar derivative expansion (discussed in the slides) results by formally
expanding the (free field) Green’s function as

1

�−m2
(x, y) =

−1

m2

1

1− �
m2

(x, y) = −δ4(x, y)
1

m2

∞∑
p=0

(
�x

m2

)p
(45)
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where now the scale m2 plays the role that Λ did in our precious discussion.

Exercise: Take the expression (45) and explicitly expand (44) up to order n = 2.
Eliminate redundant operators. What does the the resulting EFT look like up
quartic order in derivatives?

The perhaps more familiar diagrammatic expansion (in position space) results by formally
denoting G0 = i

�−m2 , wherein the n = 1 term becomes

−~
4
g

∫
d4xd4yδ4(x, y)G0(x, y)Φ2(y) (46)

and similarly, the n = 2 term becomes

+
i~
16
g2

∫
d4xd4yd4z δ4(x, z)G0(x, y)Φ2(y)G0(y, z)Φ2(z) (47)

Diagrammatically, these correspond to the following position space Feynman diagrams:

where each vertex is assigned a factor of g, and where the net effect of including higher and
higher order corrections would be to keep adding two external legs to the loop integration.
The fact that this action is valid only to one loop is due to the fact that there is only one
independent internal variable to integrate over when one takes the trace in (44). However,
it remains to explicitly compute G0(x, y) and by extension, the second term in (43). For
this, we find it most convenient to introduce the method of the heat kernel, not least for its
economy of method, but also because on a general curved background, it represents one of
the most powerful methods to integrate out fields and to compute effective actions.

II. INTRODUCTION TO THE HEAT KERNEL I

For this part of the discussion, we switch to Euclidean signature and revert to units where
~ ≡ 1). Recall that the object we are interested in calculating is (once we turn off external
sources)

e−W = det[−� +m2(ψ)]−1/2 = N
∫
Dφ e−

1
2

∫
d4xφ[−�+m2(ψ)]φ (48)
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where we allow for the mass to depend on some other field ψ, which could be an external
background. Performing the same manipulations as before

W =
1

2
ln det[−� +m2(ψ)]

=
1

2
Tr log[−� +m2(ψ)]

=
1

2

∫ ∞
0

ds

s
Tr e−s[−�+m2(ψ)]

(49)

Where the last equation follows from the fact that

lim
ε2→0

∫ ∞
ε2

ds

s
e−sx = lim

ε2→0
−Ei[−xε2]

≈ (∞) + log[x]

(50)

where the latter follows from asymptotic form of the exponential integral function, and where
we drop a constant infinite term (more precisely, we absorb into an appropriate counterterm–
more on this later). The factor ε2 (of dimension length squared) is required to regulate the
lower limit of the integral. Denoting the argument of the integrand in the final line of (49)
as

G(x, x′; s) := θ(s)〈x|e−s[−�+m2(ψ)]|x′〉 (51)

so that

Tr e−s[−�+m2(ψ)] =

∫
d4xG(x, x′; s) (52)

where the factor of θ(s) in (51) is to ensure that the trace is always convergent. We see from
its definition that G(x, x′; s) satisfies the equation and normalization condition

[∂s −�x +m2(ψ)]G(x, x′; s) = δ(s)δ4(x, x′)

G(x, x′; 0) = δ4(x, x′),
(53)

which is the defining equation for the Green’s function for the diffusion equation in 5-d, where
we identify s with a fictitious time coordinate (recalling that the other four dimensions are
Euclidean), justifying the terminology of ‘Heat Kernel’. It’s easy to see that its solution in
flat space (in the limit where the ψ dependence of m2 can be neglected) is given by

G(x, x′; s) := θ(s)
e−m

2(ψ)s

16π2s2
e−

(x−x′)2
4s (54)

From (49) and (52), we see that the effective action is thus given by

W =
1

2

∫ ∞
ε:=Λ−2

ds

s

∫
d4xG(x, x; s) (55)

Substituting the solution (54) into the above, we find that

W =
1

32π2

∫
d4x

∫ ∞
Λ−2

ds

s3
e−m

2(ψ)s (56)
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Evaluating the above integral, we find

W =
1

64π2

[
Λ4 −m4(ψ)log

m2(ψ)

Λ2

]
+ ... (57)

which is none other than the Coleman-Weinberg correction to the effective potential.

[1] K. Huang, “Quantum field theory: From operators to path integrals,” New York, USA: Wiley

(1998) 426 p

[2] H. Kleinert, “Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial

Markets,” World Scientific, Singapore, 2004

[3] P. Di Francesco, P. Mathieu and D. Senechal, “Conformal field theory,” New York, USA:

Springer (1997) 890 p; Heat Kernel covered in Chapter 5.

[4] D. V. Vassilevich, “Heat kernel expansion: User’s manual,” Phys. Rept. 388, 279 (2003) [hep-

th/0306138].


